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Abstract The tangent dynamics of the Lyapunov modes and their dynamics as generated
numerically—the numerical dynamics—is considered. We present a new phenomenological
description of the numerical dynamical structure that accurately reproduces the experimen-
tal data for the quasi-one-dimensional hard-disk system, and shows that the Lyapunov mode
numerical dynamics is linear and separate from the rest of the tangent space. Moreover, we
propose a new, detailed structure for the Lyapunov mode tangent dynamics, which implies
that the Lyapunov modes have well-defined (in)stability in either direction of time. We test
this tangent dynamics and its derivative properties numerically with partial success. The
phenomenological description involves a time-modal linear combination of all other Lya-
punov modes on the same polarization branch and our proposed Lyapunov mode tangent
dynamics is based upon the form of the tangent dynamics for the zero modes.

Keywords Lyapunov stability · Lyapunov modes

1 Introduction

We consider the dynamics of the Lyapunov modes found in two-dimensional hard-disk sys-
tems. These modes are a subset of the so-called Lyapunov vectors, which are particular
phase space perturbations whose (in)stability is characterized by a Lyapunov exponent. The
modes themselves exhibit spatial and time modality and study of the Lyapunov modes has
been consequently mainly motivated by their possible connection to hydrodynamic fluctua-
tions in fluids.

The empirical observation of these modes [4, 12, 15] has led to various studies of their
physical origins based on several different approaches. Firstly, random matrix approxima-
tions have demonstrated the importance of translational invariance in the phase space [6],
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while a combined random matrix and master equation approach [18] has predicted the ex-
istence of the Lyapunov steps, which are the sets of degenerate Lyapunov exponents char-
acterizing the Lyapunov mode (in)stability, and of the spatial modality. Alternatively, appli-
cation of kinetic theory in Ref. [10] exhibited a connection between mode generation and
conservation laws, and predicted polarization of the modes into longitudinal and transverse
polarization branches. Further, describing Lyapunov modes as Goldstone modes [3] arising
from symmetry breaking produced approximations to the wavenumber dependence of the
Lyapunov exponents and the form of the modes.

The abovementioned approaches focus mainly on the generation and spatial structure of
the Lyapunov modes. The underlying general theory of the tangent dynamics of the Lya-
punov modes is well-known (see e.g. [5] or [7] for a review), while study of the dynamics
of the Lyapunov modes as they are generated numerically—the numerical dynamics—has
included: observation of time-periodicity in the longitudinal modes [9, 11, 15, 19]; predic-
tion of the consequent mode propagation speeds for low densities (see e.g. Refs. [3, 10]);
and has revealed a connection between the time oscillating period and the momentum au-
tocorrelation function [19]. References [5, 19] have considered the numerical dynamics of
longitudinal modes in terms of rotations in the tangent space, but the numerical dynami-
cal structure of the modes has not been examined in the same level of detail as the spatial
structure or the degeneracy of the Lyapunov exponents.

In the present work, we present a phenomenological description of the numerical dynam-
ical structure of modes in the quasi-one-dimensional system, which accurately reproduces
the numerical dynamics of its Lyapunov modes. This description demonstrates that the mode
numerical dynamics is linear and appears to separate from the numerical dynamics of the
other, non-modal Lyapunov vectors. Moreover, we propose for the first time a detailed struc-
ture of the mode tangent dynamics. This mode tangent dynamics possesses a symplecticity
property, which is shown to imply that the Lyapunov modes lie in the so-called Oseledec
decomposition spaces, and so have well-defined (in)stability in either direction of time. We
test this tangent dynamics and its derivative properties numerically with partial success. The
essential feature of the phenomenological description is that the numerical dynamics of a
Lyapunov mode is a time-modal linear combination of all other modes on the same polar-
ization branch. Our mode tangent dynamics is based on this phenomenological description
and an extension of the zero mode tangent dynamics.

2 Lyapunov Vectors and Modes

2.1 Tangent Space Dynamics

Consider an r-dimensional system of N identical particles, with phase space M � R
2rN .

For a state ξ ∈ M the dynamics ξ(t) is represented by the phase flow φt : M → M . That is,
ξ(t) = φt (ξ), where

ξ = (p, q) = (p1, . . . , pN, q1, . . . , qN) (2.1)

and pi (qi) is the momentum (position) of the ith particle.
In the present work we consider a system of hard-spheres, which interact only by in-

stantaneous elastic collisions. There is no external potential in this system and we neglect
tangent collisions so that this phase flow is differentiable. A small perturbation δξ of the
state ξ then has dynamics (to first order)

δξ(t) = Dξφ
tδξ, (2.2)
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where Dξφ
t ≡ ∂φt/∂ξ is the 2rN × 2rN matrix of partial derivatives of the phase flow. The

map Dξφ
t is called the tangent flow, and we may consider Dξφ

t : TξM → Tφt (ξ)M , where
TξM is the tangent space to M at ξ . The dynamics in (2.2) therefore implies a perturbation
δξ may be considered to be a tangent vector, which is an element of the tangent space. We
henceforth adopt the convention of calling δξ a tangent vector. The components of δξ are
written

δξ = (δp, δq) = (δp1, . . . , δpN, δq1, . . . , δqN). (2.3)

2.2 Lyapunov Exponents and Vectors

A detailed summary of the following theory of Lyapunov vectors and the numerical scheme
is presented in Appendix A. Firstly, it is well-known that one may choose an orthogonal
basis of the tangent space such that in the positive time limit t → ∞, each basis element
δξ+

k satisfies

‖δξ+
k (t)‖ → exp

(
λ(jk)t

)‖δξ+
k ‖, (2.4)

for k = 1, . . . ,2rN and 1 ≤ jk ≤ l (see Appendix A.1). Here l ≤ 2rN is the number of
distinct exponents λ(jk), which are called Lyapunov exponents and are ordered such that
λ(1) > · · · > λ(l). The ordered set of Lyapunov exponents is called the Lyapunov spectrum,
and we say the tangent vector δξ+

k is ‘associated with’ the Lyapunov exponent λ(jk).
The notation λ(j) here denotes a distinct Lyapunov exponent. A particular exponent λ(j)

may have multiplicity m(j), such that jk = · · · = jk+m(j) ≡ j . The associated basis elements
δξ+

k , . . . , δξ+
k+m(j) then span a subspace of TξM , whose elements are themselves all associ-

ated with λ(j). There are therefore many possible (pairwise linearly independent) choices of
δξ+

k , . . . , δξ+
k+m(j) for m(j) ≥ 2. We label this subspace U

(j)

ξ,+ ⊂ TξM , and call the elements

of U
(j)

ξ,+ Lyapunov vectors.
The system under consideration is Hamiltonian, so that the dynamics φt is reversible

and we may similarly consider the behavior of tangent vectors in the negative time limit,
t → −∞ (see Appendix A.2). In this case, the Lyapunov spectrum is −λ(l) > · · ·−λ(1), and
we may choose another orthogonal basis of TξM such that

‖δξ−
k (t)‖ → exp

(−λ(jk)t
)‖δξ−

k ‖. (2.5)

There similarly exist subspaces U
(j)

ξ,− ⊂ TξM whose elements are associated to −λ(j) for
t → −∞.

Notably, a Lyapunov vector associated to −λ(j) for t → −∞ is not necessarily associated
to λ(j) for t → +∞, so that U

(j)

ξ,+ �= U
(j)

ξ,− in general. However, it is possible to decompose
the tangent space into subspaces whose elements do have well-defined Lyapunov exponents
in either direction of time (see Appendix A.3). These subspaces are called Oseledec spaces,
denoted W

(j)

ξ , and a tangent vector δξ ∈ W
(j)

ξ satisfies both (2.4) and (2.5) with exponent
λ(j). The Oseledec spaces are also covariant: they are preserved by the tangent dynamics, so
that Dξφ

tW
(j)

ξ = W
(j)

φt (ξ)
.

2.3 Numerical Scheme

A set of 2rN orthonormal Lyapunov vectors may be generated numerically by the numerical
scheme of Benettin [2] and Shimada [17], which is used primarily to generate the Lyapunov
spectrum. This scheme (see Appendix A.4) involves evolving a set of randomly chosen,
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Fig. 1 Schematic of an N hard-disk quasi-one-dimensional system. The height Ly is sufficiently small that
the disks cannot pass one another. We choose the coordinate origin to be located at the bottom left corner of
the system, and system boundaries are denoted by dashed lines. The pairs of opposite boundaries x = 0,Lx

or y = 0,Ly may possess either periodic (P) or hard (H) boundary conditions. We call the system with hard
x = 0,Lx boundaries and periodic y = 0,Ly boundaries the HP quasi-one-dimensional system

linearly independent tangent vectors forwards in time under the tangent flow, whilst peri-
odically performing Gram-Schmidt orthonormalization. The resulting set converges to an
orthonormal Lyapunov vector basis. Importantly, the Lyapunov vectors generated by this
scheme are strictly associated with −λ(j) for t → −∞, rather than with +λ(j) for t → +∞
as would be expected naively.

The Hamiltonian nature of the system further guarantees (see Appendix A.5) that there is
always a Lyapunov exponent equal to zero (that has even multiplicity) and all other distinct
exponents are paired signwise, so

λ(j) = −λ(l−j+1). (2.6)

It follows that the number of distinct exponents l is always odd and that λ([l+1]/2) = 0.
Furthermore, a basis of 2rN Lyapunov vectors may be uniquely specified by considering

only the first rN Lyapunov vectors generated by the numerical scheme (see Appendix A.5).
These rN Lyapunov vectors span U

(1)
±,ξ ⊕ · · · ⊕ U

([l−1]/2)

±,ξ together with half of U
([l+1]/2)

±,ξ .
We henceforth call these Lyapunov vectors the positive Lyapunov vectors, since they are
associated with exponents λ ≥ 0. The remaining rN Lyapunov vectors associated with λ ≤ 0
are called negative Lyapunov vectors.

2.4 Quasi-One-Dimensional System

Henceforth we consider only two-dimensional rectangular systems of N particles with rec-
tangular boundaries, so in (2.1) the components pi, qi ∈ R

2. We use Cartesian coordinates
(x, y) in this system and let q = (x, y) and p = (px,py). For simplicity, we will mainly con-
sider a special case of the rectangular system called the quasi-one-dimensional system. This
system is a two-dimensional system which is sufficiently narrow so that particles cannot
pass one another (see Fig. 1).

2.5 Zero Modes

In the case of periodic boundary conditions, the rectangular system has full translational spa-
tial and time symmetry. There are then (see Appendix A.6) six Lyapunov vectors associated
with λ([l+1]/2) = 0 in either time limit. The first of these Lyapunov vectors corresponds to
uniform translation in the x direction and is δξ1 = 1/N1/2(0,0, e1, . . . , e1), where e1 = (1,0)

is repeated N times and 0 is the N dimensional zero vector. We simplify this notation by
writing (see (2.3))

δξ = (. . . , (δpix , δpiy ), . . . , . . . , (δqix , δqiy ), . . .) ≡ (δpx, δpy, δqx, δqy), (2.7)
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so δξ1 = 1/N1/2(0,0,1,0). The other five Lyapunov vectors are then δξ2 =
1/N1/2(0,0,0,1), δξ3 = 1/‖p‖(0,0,px,py), δξ4 = 1/N1/2(1,0,0,0), δξ5 =
1/N1/2(0,1,0,0) and δξ6 = 1/‖p‖(px,py,0,0), which correspond respectively to trans-
lation in the y direction, time translation, a uniform momentum boost in the x direction, a
uniform momentum boost in the y direction, and an energy shift. Note that in the case of
e.g. δξ3, putting δpx = px means that δpix = pix . These Lyapunov vectors are collectively
called the zero modes. One finds that linear combinations of δξ1, δξ2 and δξ3 (δξ4, δξ5 and
δξ6) belong to the positive (negative) Lyapunov vectors (see Sect. 2.3).

In the case that boundary conditions at one pair of opposite boundaries of the rectangular
system are reflecting rather than periodic, then one symmetry is broken and the number of
zero modes is reduced by two. For a quasi-one-dimensional system with mixed period and
reflecting boundary conditions, we thus expect four zero modes. We assume in the present
work that time symmetry is never broken and total energy is always conserved, so there are
always at least two zero modes for the system.

2.6 Lyapunov Modes in the Quasi-One-Dimensional System

Consider a positive Lyapunov vector, δξ ∈ TξM of unit norm at some fixed time t . Gen-
erally in any r dimensional system, the Lyapunov vectors generated by the numerical
scheme are strongly dynamically localized (see e.g. Ref. [14]). This means that for a small,
rapidly changing index subset of the integers 1, . . . ,2rN the components δpi, δqi ∼ 1 and
δpi, δqi � 1 elsewhere.

However, Lyapunov exponents close to zero exhibit a degenerate step-like structure, and
the Lyapunov vectors associated with these exponents are found to be delocalized over the
N particles [4, 12, 15]. More precisely, the components δpi (δqi ) are approximately lin-
ear combinations of φp(pi) (φq(qi)) and piψp(qi) (piψq(qi)), where φp,φq : R

2 → R
2 and

ψp,ψq : R
2 → R are modal functions. The functions φp or φq are called modal vector fields

and piψp or piψq are called a scalar modulation of the momentum field. The Lyapunov vec-
tors with this modal property are called Lyapunov modes, and in this work will be denoted
by δη. The Lyapunov modes may be represented by the fields φp , φq , ψp and ψq which
approximate them. We call this the vector field representation of the Lyapunov mode.

We call the modes belonging to the positive Lyapunov vectors the positive modes. For
a general two dimensional system, the zero modes belonging to the positive modes—the
positive zero modes—are linear combinations of

δη1 =
(

1
0

)
, δη2 =

(
0
1

)
, δη3 = 1

‖p‖
(

px

py

)
. (2.8)

Note that we write the positive zero modes in the vector field representation, and we only
write the spatial components, as the momentum components are all zero.

For a general two dimensional system, the modal scalar or vector fields that well-
approximate the non-zero Lyapunov modes have a certain number of nodes in the x or y

direction. We define nx (ny ) to be the number of nodes in the x (y) direction of this Lya-
punov mode and define the wavevector of the mode to be

k ≡ (kx, ky) = (πnx/Lx,πny/Ly), (2.9)

where Lx and Ly are the spatial sizes of the system. There may clearly be several modes with
the same wavenumber ‖k‖, but for a particular wavenumber, one finds that the corresponding
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positive modes are associated with Lyapunov exponent

λ ≈ CT ‖k‖, or λ ≈ CL‖k‖, (2.10)

where CT and CL are some scalar constants of the system (see e.g [10] or [5]). The modes
associated with CL‖k‖ are called longitudinal modes, while those associated with CT ‖k‖
are called transverse modes. Generally there are twice as many longitudinal modes as trans-
verse modes for any particular ‖k‖: a longitudinal mode may be written as αδηL + βδηP ,
where δηL is formed by a modal vector field called an L-mode and δηP is a formed by
a scalar modulation of the momentum field called a P-mode; while a transverse mode is
written as δηT , a modal vector field called a T-mode. For this reason, the longitudinal (trans-
verse) modes are often referred to as LP-modes (T-modes), and the two linearly independent
orthogonal linear combinations of a particular δηL and δηP are called an LP mode pair.

One notable empirical feature of the non-zero positive or negative Lyapunov modes is
that the momentum component δp of a mode is found to be proportional to the spatial
component δq . That is, we may write

δη ≈ (Cδq, δq), (2.11)

where C is a scalar. This relation means that we need only specify the spatial part of the
Lyapunov mode in order to describe the entire mode (see e.g. [5]), and henceforth we con-
sider only the spatial parts of the mode unless stated otherwise. Equation (2.11) also permits
us to visually represent a Lyapunov mode by drawing each (2-dimensional) δqi at the corre-
sponding coordinates qi . For a quasi-one-dimensional system we may plot instead 〈δxj 〉 or
〈δyj 〉 against 〈xj 〉 = jLx/N (see Ref. [19]).

For convenience, we henceforth set Lx = 2π . For the HP quasi-one-dimensional system,
which is of particular interest in the present work, the vector field representations of the
positive T, L and P modes respectively are found to be approximately of the form [5]

δηT (kx) = √
2

(
0
1

)
cos(kxx),

δηL(kx) = √
2

(
1
0

)
sin(kxx), (2.12)

δηP (kx) = 1

‖p‖
(

px

py

)
cos(kxx),

for kx = 1/2,1,3/2, . . . .

2.7 Inner Product and Basis

The Lyapunov modes generated by the numerical scheme are orthonormal. In the vector
field representation, the inner product, which defines orthonormality, is simply

〈δηi, δηj 〉 = 1

LxLy

∫ Ly

0

∫ Lx

0
δηi · δηjdxdy, (2.13)

where δηi · δηj means a dot product of δηi and δηj in the vector field representation. Note
that by conservation of momentum, under this inner product

∫ Ly

0

∫ Lx

0
pxdxdy =

∫ Ly

0

∫ Lx

0
pydxdy = 0, (2.14)
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and the T, L, P and zero modes in (2.8) and (2.12) have unit norm under this inner product.
From (2.12) it follows clearly that 〈δηT , δηL〉 = 0. Further, as expected 〈δηa(i), δηa(j)〉 =

0, for a = T ,L or P and half-integers or integers i �= j . However, δηP (kx) is not orthogonal
to δηT (kx) in general, since

〈δηT (kx), δηP (kx)〉 =
√

2

4π‖p‖
∫ 2π

0
py cos(2kxx)dx. (2.15)

Similarly the zero modes δη1 or δη2 are not strictly orthogonal to the P-modes. Of course,
the T (zero) and P (P) modes must always be orthogonal, as they are Lyapunov vectors
associated to different Lyapunov exponents. This difficulty may be resolved by presuming
that the py scalar field is random white noise, so that the integral is zero.

Note also the L and P modes δηL(kx) and δηP (kx) are not strictly orthogonal, since

〈δηL(kx), δηP (kx)〉 =
√

2

4π‖p‖
∫ 2π

0
px sin(2kxx)dx. (2.16)

This may be easily resolved by performing an orthonormalization procedure on the L and
P modes, which are associated with the same Lyapunov exponent and need not be strictly
orthogonal. However, in line with our presumption for the py , we instead presume the px

are also white noise, so the integral is zero.
Using notation in (2.8) and (2.12), a basis of positive Lyapunov modes for the HP quasi-

one-dimensional system (see Fig. 1) is then the set

{
δη2, δη3, δηT

(1

2

)
, δηL

(1

2

)
, δηP

(1

2

)
, . . . , δηT

(m

2

)
, δηL

(m

2

)
, δηP

(m

2

)}
, (2.17)

where K ≡ 3m + 2 is the number of Lyapunov modes in the system. Note that the δη1

zero mode is absent, since translational symmetry in the x direction is broken by the hard
boundary conditions.

3 Lyapunov Mode Phenomenology

3.1 Numerical Dynamics

Let �t be the matrix whose columns are the 4N orthonormal Lyapunov vectors δξ t gen-
erated at a particular time t by the numerical scheme, with �0 ≡ �. We call the dynamics
of a Lyapunov vector or mode under the numerical scheme the numerical dynamics. This
dynamics is not equivalent to the actual tangent space dynamics (2.2), since the numerical
scheme involves both evolution under the tangent flow combined with regular application of
the Gram-Schmidt orthnormalization procedure.

The numerical dynamics of the Lyapunov vectors may then be written as

�t = Nt
�(�), (3.1)

where Nt
� : TξM → Tφt (ξ)M is the numerical dynamics operator, which preserves orthonor-

mality. The notation in (3.1) indicates operation of Nt
� column-wise on the matrix �, such

that if � = (. . . |δωj | . . .), then Nt
�(δωj ) = δωt

j . Although Nt
�(�) is a matrix under this no-

tation, the operator Nt
� is not generally a linear map, as its form is dependent on the choice
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Fig. 2 Contour plots of the predicted LP mode numerical dynamics in the HP quasi-one-dimensional system
according to (3.2) for (a) δηt

x and (b) δηt
y/py . Three contours are shown in each plot: a contour at the half

maximum height level, 1/
√

2 (dashed line); a contour at the zero level (solid line); and a contour at the half
minimum height level, −1/

√
2 (dotted line)

of � and in particular the ordering of its columns, due to the iterative nature of the Gram-
Schmidt procedure. We indicate this sensitivity to the choice of Lyapunov vector basis and
its ordering by the subscript �. Note that both TξM and Tφt (ξ)M � R

4N , so that we may
consider Nt

� : R
4N → R

4N , or Nt
� : R

2 → R
2 in the vector field representation.

The Lyapunov modes generated by the numerical scheme may exhibit time-periodic be-
havior. That is, for a Lyapunov mode δηt at some time t , there exists some period τ such that
δηt = δητ+t . The longitudinal modes generally exhibit the most obvious time-periodicity, as
can be seen for the HP quasi-one-dimensional system in Figs. 4 and 5 of [19].

Many previous works (e.g. [5, 19]) have noted that the numerical dynamics of an LP
mode pair are well-approximated by a time-modulated linear combinations of their corre-
sponding L and P modes at some fixed time, say t0 = 0. For example, putting τ = 2π , we
might have

δηt ≡
(

δηt
x

δηt
y

)
≈ √

2 cos(t)

(
1
0

)
sin(x/2) + sin(t)

1

‖p‖
(

px

py

)
cos(x/2), (3.2)

as an approximation to longitudinal mode 197 shown in Figs. 4 and 5 of Ref. [19].
Figure 2 shows the contour plots for the predicted LP mode numerical dynamics ac-

cording to (3.2). Note that we neglect terms involving px in the x-component of the
mode, since we assumed this momentum component was random white noise. Similarly,
the y-component of an LP mode includes only terms with py coefficients, so we plot instead
δηt

y/py . We will plot all other modes in this way.
The empirical contour plots in Fig. 5 of Ref. [19] reveal notable features of the LP mode

dynamics such as triangular-like half-height contours that have a dimple on their short side.
These are not reproduced in Fig. 2 here. Hence, at least in the quasi-one-dimensional case,
it is clear that the time-periodic behavior of the LP mode is not fully described by (3.2).
There are therefore two questions which arise concerning the numerical dynamics: can a
better description of the numerical dynamics be found; and moreover is the time periodicity



Lyapunov Mode Dynamics in Hard-Disk Systems 9

merely an artifact of the numerical scheme or a more fundamental property of the tangent
dynamics.

3.2 Separation of the Numerical Dynamics

The numerical dynamics operator Nt
� is bijective, so that at some time t a Lyapunov vector

may be described as some linear combination of all the other Lyapunov vectors at some
initial time t = 0. However, the partially successful description (3.2) of an LP mode at any
time t involves a linear combination of only its corresponding L and P modes at t = 0.
Validity of (3.2) implies then that the numerical dynamics of this LP mode pair separates
from the dynamics of other Lyapunov modes or vectors, and that the numerical dynamics is a
linear map. We now use this general principle to obtain a better description of the numerical
dynamics with the following claim.

Let {δηk}, k = 1, . . . ,K be a basis of positive Lyapunov modes ordered as in (2.17). Let
�t be the 2 × K matrix with orthonormal columns whose kth column is the positive mode
δηt

k in the vector field representation. For the HP quasi-one-dimensional system, by (2.17)
we set the vector field representation form for �0 ≡ � to be the 2 × 11 matrix

� =
(

δη2

∣∣
∣δη3

∣∣
∣δηT

(1

2

)∣∣
∣δηL

(1

2

)∣∣
∣δηP

(1

2

)∣∣
∣ . . .

∣∣
∣δηT

(3

2

)∣∣
∣δηL

(3

2

)∣∣
∣δηP

(3

2

))
. (3.3)

Claim After some time interval t , the positive Lyapunov modes δηt
k are time-modulated

linear combinations of only the positive initial modes δηk such that

�t = �A(t), (3.4)

where A(t) is a modal, orthogonal K ×K matrix. We call A(t) the admixture matrix since it
represents linear combinations of Lyapunov modes. We further claim the longitudinal (trans-
verse) modes are linear combinations only of the initial longitudinal (transverse) modes.

According to (3.4), the j th column of A(t), aj (t), is matrix-multiplied with the matrix
� to produce the j th mode at any time t . We say that aj (t) generates the j th mode, and
note that A(t) must be orthogonal since the numerical scheme produces orthonormal sets
of Lyapunov modes: both �t and � have orthonormal columns, and hence A(t) must be
orthogonal. The claim (3.4) implies that the numerical dynamics of either the longitudinal
or transverse modes separates from that of the rest of the tangent space.

3.3 Admixture Matrix

In order to test the claim (3.4), we now seek to construct the matrix A(t) for the HP quasi-
one-dimensional system (see Fig. 1). For simplicity, we fix the period τ = 2π , and we only
construct explicitly the columns of A(t), which generate the zero modes and those modes
corresponding to smallest wavenumber kx = 1/2. That is we consider only the first five
columns of A(t).

The positive zero modes are static under the numerical dynamics (see Appendix A.6),
and assuming the transverse modes are also static,1 from (3.2) an initial guess at the matrix

1Fourier analysis of the empirical transverse mode numerical dynamics is required to confirm this. We do not
address this issue in the present work.
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A(t) is the block diagonal matrix

A(t) ≡
(
a1(t)

∣
∣∣ . . .

∣
∣∣a11(t)

)
=

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎝

1 0 0 . . .

0 1
1 0 0

0 0 cos(t) sin(t)

0 − sin(t) cos(t)
...

. . .

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎠

, (3.5)

where the submatrices on the diagonal are rotation matrices with period 2π .
Now, the desired finer details of the LP modes, such as dimples in the half-height con-

tours, appear to occur at double the frequency of the actual mode, so we presume then that
there are terms such as cos(t) cos(2t) in the admixture matrix: we expect a modulation on
top of the modulation described in (3.2), so that the former has double the latter’s frequency.
Since A(t) is orthogonal, its columns must have unit norm, so if cos(t) cos(2t) occurs in
a column then so must cos(t) sin(2t), sin(t) cos(2t) and sin(t) sin(2t). Treating (3.5) as a
starting approximation, and enforcing orthonormality, a possible choice of the fourth and
fifth columns of A(t) is

a4(t) = 1√
1 + α2

(
0,0,0,

c(t),−s(t),0, αc(t)c(2t),−αs(t)s(2t),0, αs(t)c(2t),−αc(t)s(2t)
)
, (3.6)

a5(t) = 1√
1 + α2

(
0,0,0,

s(t), c(t),0, αs(t)c(2t),−αc(t)s(2t),0,−αc(t)c(2t), αs(t)s(2t)
)
, (3.7)

where c(t) ≡ cos(t), s(t) ≡ sin(t), and α > 0 is some small real number.
Plots of the predicted modes generated by these columns are shown in Fig. 3. As can

be seen by comparison with Fig. 5 in Ref. [19], the finer structure of the mode dynamics,
such as the triangular positive and negative half-height contours with dimples, appear to
be properly reproduced and oriented by (3.6) and (3.7). Further, the zero level contour of
the δηy/py components appears to match closely the numerical data, although this is more
difficult to determine due to numerical noise. Equations (3.6) and (3.7) therefore appear to
better describe the numerical dynamics than (3.2).

4 Lyapunov Mode Dynamics

4.1 Full Numerical Dynamics of the Lyapunov Modes

For a basis of positive Lyapunov modes {δηk}, k = 1, . . . ,K as in (2.17), we may define a
corresponding basis of negative modes (see Appendix A.5) by putting

δηk+K = J4Nδηk. (4.1)

Here for some integer L, J2L is the 2L × 2L matrix

J2L =
(

0 −I

I 0

)
, (4.2)
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Fig. 3 Contour plots of the predicted first and second LP mode numerical dynamics in the HP
quasi-one-dimensional system according to (3.6) and (3.7) for (a) δηx of the first LP mode, (b) δηx of the
second LP mode, (c) δηy/py of the first LP mode, and (d) δηy/py of the second LP mode. The parameter
α = 0.2. Three contours are shown in each plot: a contour at the half maximum height level, 1/

√
2 (dashed

line); a contour at the zero level (solid line); and a contour at the half minimum height level, −1/
√

2 (dotted
line). Compare this figure with Fig. 5 of Ref. [19]

in which 0 (I ) is the L × L null (identity) matrix.
We define the matrix � = (. . . |δηk| . . .) similarly to (3.3), and then by (4.1), (�|J4N�) =

(δηk)
2K
k=1 is a matrix whose columns form an orthonormal basis of all the Lyapunov modes.

Note that we consider here δηk ∈ R
4N , rather than the vector field representation, and the

inner product of modes is then simply the dot product δηi · δηj ≡ δηT
i δηj , rather than an

integral (2.13). The following arguments will, of course, hold for the vector field represen-
tation and its inner product. Note also that the orthonormality of the columns of (�|J4N�)

is due to the property

�T J4N� = 0. (4.3)
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This depends on the fact that positive mode δηk ∈ U
(j)

ξ,−, for some j ≤ (l + 1)/2. However,

Jδηk ∈ JU
(j)

ξ,− = U
(l−j+1)

ξ,− (see Appendix A.5) is a negative mode and the spaces U
(j)

ξ,− are
all orthogonal, so δηi · Jδηk = 0 for any i and k.

The claim (3.4) describes the numerical dynamics of only the positive modes. How-
ever, the numerical dynamics Nt

� (3.1) is a symplectic operator (see Appendix B) such that
(J4N�)t = J4N(�)t . Hence by the claim (3.4), the negative modes must have dynamics
(J4N�)t = J4N(�)t = J4N�A(t). The claim (3.4) therefore implies that the full numerical
dynamics of all the modes is simply

(
�

∣
∣∣J4N�

)t =
(
�

∣
∣∣J4N�

)
N (t), where N (t) ≡

(
A(t) 0

0 A(t)

)
. (4.4)

Since, according to the claim (3.4), the matrix A(t) is orthogonal, then so is the 2K ×2K

matrix N (t). The orthogonality of A(t) also means that N (t) is a symplectic matrix. That
is,

N (t)T J2KN (t) = J2K, (4.5)

as expected (see Appendix B).
Further, by (3.1), the numerical dynamics of the modes may be generally written as

(
�

∣∣
∣J4N�

)t = Nt
�

[(
�

∣∣
∣J4N�

)]
, (4.6)

where here Nt
� : R

4N → R
4N . Note that the ordering of (�|J4N�) does not matter as Nt

�

is a column-wise operator (see (3.1)). Let TξX ≡ span{δηk}2K
k=1. Then the numerical dynam-

ics (4.4) implies that TξX is an invariant subspace of Nt
�, that is Nt

�(TξX) = TξX, or in
other words, the numerical dynamics on TξX separates from the dynamics on the rest of
the tangent space. Furthermore, comparing (4.4) with (4.6) it follows that Nt

�[(�|J4N�)] =
(�|J4N�)N (t), and hence

Nt
�(δηk) =

(
�

∣∣
∣J4N�

)
N (t)

(
�

∣∣
∣J4N�

)T

δηk. (4.7)

Since δηk is a basis of TξX, then it must be that the numerical dynamics Nt
� is a linear

operator on TξX, provided the claim (3.4) is true.

4.2 Connection to the Tangent Dynamics

Consider the usual tangent dynamics (2.2) after normalization, which we henceforth call the
normalized tangent dynamics. In general, the normalized tangent dynamics of the modes is
a linear map and may be written as

D(t)
(
�

∣
∣∣J4N�

)
= Dξφ

t
(
�

∣
∣∣J4N�

)
diag

{
1

‖Dξφtδηk‖
}2K

k=1

. (4.8)

We define δηk(t) = D(t)δηk .
Suppose the normalized tangent dynamics on TξX separates from the other dynamics, so

that D(t)δηk = (�|J4N�)D(t)(�|J4N�)T δηk for some matrix D(t) similarly to (4.7). Then,
since the δηk form a basis of TξX, it follows that we have

D(t)
(
�

∣∣
∣J4N�

)
=

(
�

∣∣
∣J4N�

)
D(t) (4.9)



Lyapunov Mode Dynamics in Hard-Disk Systems 13

noting orthonormality of the columns of (�|J4N�) means

(
�

∣∣
∣J4N�

)T (
�

∣∣
∣J4N�

)
= I2K, (4.10)

where I2K is the 2K × 2K identity matrix
The normalized tangent dynamics of the zero modes clearly separates from that of the

rest of the tangent space (see Appendix A.6). From (A.28), (A.29) and (A.30) we have that

D(t)
(
δη1

∣∣
∣ . . .

∣∣
∣δη2s+2

)
=

(
δη1

∣∣
∣ . . .

∣∣
∣δη2s+2

)
D0(t), (4.11)

where δη1, . . . , δη2s+2 are the zero modes for a system with s spatial symmetries and

D0(t) =
(

Is+1 βtIs+1[(βt)2 + 1]−1/2

0 Is+1[(βt)2 + 1]−1/2

)
. (4.12)

We may trivially decompose D0(t) as follows:

D0(t) = I2s+2

(
Is+1 βtIs+1[(βt)2 + 1]−1/2

0 Is+1[(βt)2 + 1]−1/2

)
, (4.13)

noting that the identity I2s+2 is simply the numerical dynamics of the zero modes N0(t).
Since the Lyapunov modes appear to be modulations of the zero modes [5], we then extend
this dynamical form and presume that the normalized tangent dynamics of the modes is

D(t) =
(
A(t) 0

0 A(t)

)(
IK βtIK [(βt)2 + 1]−1/2

0 IK [(βt)2 + 1]−1/2

)
, (4.14)

where we have replaced the numerical dynamics of the zero modes N0(t) by our claimed
numerical dynamics N (t) (4.4) for the modes, and adjusted the dimensionality of the matrix
on the far right accordingly. That is we claim

D(t) =
(
A(t) βtA(t)[(βt)2 + 1]−1/2

0 A(t)[(βt)2 + 1]−1/2

)
, (4.15)

is a general form for the normalized tangent dynamics, where A(t) is some periodic, or-
thogonal matrix. Note that (4.13) and (4.14) are the QR factorizations of D0(t) and D(t)

respectively. This is expected since the numerical scheme differs from the normalized tan-
gent dynamics only by the application of the Gram-Schmidt orthonormalization procedure.

4.3 Symplecticity of the Normalized Tangent Dynamics

We may further re-write (4.14) as D(t) = N (t)R(t), defining R(t) in the obvious way.
One finds that the matrix R(t) is ‘almost symplectic’, in the sense that R(t)T J2KR(t) =
J2K [(βt)2 + 1]−1/2. By (4.5) it follows that D(t) is similarly almost symplectic, i.e.

D(t)T J2KD(t) = J2K [(βt)2 + 1]−1/2. (4.16)

Now, the matrix (�|J4N�) has the property that

(
�

∣∣
∣J4N�

)T

J4N

(
�

∣∣
∣J4N�

)
= J2K, (4.17)
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and from (4.8), (4.9) and (4.10) we have explictly that

D(t) =
(
�

∣
∣∣J4N�

)T

Dξφ
t
(
�

∣
∣∣J4N�

)
diag

{
1

‖Dξφtδηk‖
}2K

k=1

. (4.18)

Separability of the normalized tangent dynamics (4.9) implies that its projection onto TξX,
which is (�|J4N�)(�|J4N�)T Dξφ

t (�|J4N�), is simply equal to Dξφ
t (�|J4N�). Hence

from this together with (4.18) and (4.17) we have that (4.16) is equivalent to

diag

{
1

‖Dξφtδηk‖
}2K

k=1

J2Kdiag

{
1

‖Dξφtδηk‖
}2K

k=1

= J2K [(βt)2 + 1]−1/2, (4.19)

which in turn holds if and only if

log‖Dξφ
tδηk‖ + log‖Dξφ

tJ4Nδηk‖ = log
{[(βt)2 + 1]1/2

}
(4.20)

for k = 1, . . . ,K .

4.4 Lyapunov Mode Stability

The empirical multiplicity of the zero modes implies (see Appendix A.7) that the spaces of
Lyapunov zero modes satisfy

U
(m)
ξ,− = W

(m)
ξ = U

(m)
ξ,+ , (4.21)

where m = (l + 1)/2 and W
(m)
ξ is the zero Oseledec space.

Suppose that the symplecticity property (4.20) of the Lyapunov modes holds. We call
the spaces U

(j)

ξ,−, whose elements are Lyapunov modes, mode spaces, and the symplecticity

property then implies that for all δξ ∈ U
(j)

ξ,−, a mode space,

lim
t→±∞

1

|t | ‖Dξφ
tδξ‖ + lim

t→±∞
1

|t | ‖Dξφ
tJ δξ‖ = 0 (4.22)

since log[(βt)2 + 1]/|t | → 0 as t → ±∞. Certainly (4.22) is true for the limit t → −∞ by
the general theory of tangent vectors, as δηk is the Lyapunov vector associated to Lyapunov
exponent λk and δηk+K to −λk in the negative time limit (see Appendixes A.1, A.2). How-
ever, this result is not necessarily true for t → +∞, and thus is a particular property of the
form of our claimed normalized tangent dynamics (4.15). We now show that (4.22) means
that

U
(j)

ξ,− = W
(j)

ξ , (4.23)

where j is such that U
(j)

ξ,− is a mode space.

In order to show U
(j)

ξ,− = W
(j)

ξ , it is sufficient to show U
(j)

ξ,− ⊆ W
(j)

ξ because dimW
(m)
ξ =

dimU
(m)
ξ,− (see Appendix A.3). First of all, it follows from (A.16) that

U
(j)

ξ,− ⊆
{
δξ ∈ TξM : lim

t→+∞
1

|t | log‖Dξφ
tδξ‖ ≥ λ(j)

}
∪ {0}. (4.24)

We then have that, by (A.25) and (A.26),

U
(j)

ξ,− = JU
(l−j+1)

ξ,−
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⊆
{
δξ ∈ TξM : lim

t→+∞
1

|t | log‖Dξφ
tJ δξ‖ ≥ −λ(j)

}
∪ {0}

=
{
δξ ∈ TξM : lim

t→+∞
1

|t | log‖Dξφ
tδξ‖ ≤ λ(j)

}
∪ {0}, (4.25)

the last step of which follows from the symplecticity relation (4.22). Comparing (4.24) and
(4.25) produces

U
(j)

ξ,− ⊆
{
δξ ∈ TξM : lim

t→+∞
1

|t | log‖Dξφ
tδξ‖ = λ(j)

}
∪ {0}, (4.26)

for a mode space U
(j)

ξ,−. But by (A.11) and (A.12), for any eigenspace it is the case that

U
(j)

ξ,− ⊆
{
δξ ∈ TξM : lim

t→−∞
1

|t | log‖Dξφ
tδξ‖ = −λ(j)

}
∪ {0}, (4.27)

and thus

U
(j)

ξ,− ⊆
{
δξ ∈ TξM : lim

t→±∞
1

|t | log‖Dξφ
tδξ‖ = ±λ(j)

}
∪ {0} ≡ W

(j)

ξ . (4.28)

Note that the result (4.23) is a partial extension of the corresponding result for the zero
eigenspaces (A.35). Moreover, (4.23) implies that the mode spaces are covariant (see Ap-
pendix A.3) and the Lyapunov modes have well-defined Lyapunov exponents in the positive
time limit. Hence our claimed tangent dynamics, via its symplecticity property (4.20), im-
plies that the modes are phase space perturbations which also have their (in)stability in the
positive time limit characterized by the same Lyapunov exponent as in the negative limit.
They therefore attain additional physical significance.

5 Numerical Results

5.1 Modified Numerical Scheme

We now check the validity of the claimed tangent dynamics (4.15) via the following modifi-
cation of the numerical scheme. Firstly, we choose 2N linearly independent tangent vectors,
and allow them to converge to an orthonormal set of Lyapunov vectors under the usual nu-
merical scheme. These approximate Lyapunov vectors, which we denote as δξj , are a set of
positive Lyapunov vectors at some initial time t0, and we set the negative Lyapunov vectors
to be

δξ4N−j+1 = J4Nδξj . (5.1)

We call δξj and δξ4N−j+1 for some j a symplectic pair of Lyapunov vectors. The ordering
of the Lyapunov vectors here corresponds to the order in which the numerical scheme (see
Sect. 2.3) produces the Lyapunov vectors: most unstable Lyapunov vector to most stable
Lyapunov vector in the positive time limit. This ordering is a convenient choice for the pur-
pose of presenting numerical data, but differs from the ordering of the positive Lyapunov
vectors δξj , j = 1, . . . ,2N , implied in (2.17). However, the ordering of the negative Lya-
punov modes here is the same as that adopted in (4.1).
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Fig. 4 Partial Lyapunov spectrum for a 50 particle quasi-one-dimensional system with periodic boundary
conditions. Lyapunov exponents λj are indexed by j according to their order of calculation by the numerical
scheme. Only the positive exponents are shown, and for the sake of the clarity of the Lyapunov steps, only
the second fifty Lyapunov exponents are plotted. Lyapunov exponents lying on identified Lyapunov steps are
indicated by different symbols with the corresponding step label shown in the legend

Let � = (. . . |δξj | . . .) for j = 1, . . . ,4N , and put the initial time t0 = 0. The middle 2K

columns of � are approximately the initial Lyapunov modes. We denote these modes as δηj ,
with j = 2N − K + 1, . . . ,2N + K to match the indexing of the δξj .

We wish to consider the evolution of the δηj under the normalized tangent dynamics
only, so that the Gram-Schmidt orthonormalization, which occurs at regular intervals, is re-
placed by just normalization. Unfortunately, the chaotic nature of the system means that
the numerics is inherently unstable without the Gram-Schmidt procedure, because numer-
ical noise introduces components of the strongly dynamically localized Lyapunov vectors,
which exponentially dominate the modes under further evolution. To reduce this numerical
instability, we therefore continue to Gram-Schmidt orthonormalize the modes with respect
to the first 2N − K Lyapunov vectors. This modified numerical scheme for the modes may
be written explicitly as

δηj (t) = Ck

(

I4N −
2N−K∑

i=1

δξ t
i (δξ

t
i )

T

)

Dξφ
tδηj (5.2)

for j = 2N − K + 1, . . . ,2N + K , where Ck is the appropriate normalization constant.
We compute the Lyapunov modes δηj (t) for a N = 50 particle quasi-one-dimensional

system with periodic boundary conditions and density 0.80. In all the following compu-
tations we use an initial set of positive Lyapunov vectors δξj , j = 1, . . . ,100, generated
after 1200 collisions per particle, with the usual Gram-Schmidt procedure applied after each
collision.

In Fig. 4 we show the Lyapunov spectrum for this system. The zero exponents and first
three positive steps are readily apparent: the two-point steps consist of a two-fold degenerate
Lyapunov exponent associated with transverse modes, whilst the single four-point step con-
sists of a four-fold degenerate Lyapunov exponent associated with longitudinal modes. We
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label these steps 0, T1, LP1, and T2 according to increasing Lyapunov exponent, as shown
in Fig. 4. Using the Lyapunov exponent value of these steps to calculate the constants in the
dispersion relation (2.10), one identifies a further two-point step, T3, so we therefore set the
number of positive modes to be K = 13.

5.2 Normed Differences

From (4.15), for index j = 88, . . . ,100 one finds that the positive Lyapunov modes have
normalized tangent dynamics δηj (t) = �a100−j+1(t), while the negative modes have

δη200−j+1(t) = �(I t + J200)a100−j+1(t)/[(βt)2 + 1]−1/2, (5.3)

where aj (t) is the j th column of A(t). Comparison of this normalized tangent dynamics
with the numerical dynamics (4.4) reveals that the positive modes, δηj (t), should coincide
with δηt

j , where as usual δηt
j denotes numerical dynamics. That is, for j = 88, . . . ,100, we

should have that the normed difference

‖δηj (t) − δηt
j‖2 = 0. (5.4)

Note that if this condition is satisfied, then the normalized tangent dynamics must preserve
orthonormality on the positive modes,2 as predicted in (4.15), so we obtain a measure of the
orthogonality of A(t). According to (4.4), (J200δηj )

t = J200�a100−j+1(t) and hence from
(5.3) it follows that we additionally expect

‖δηj (t) − δηt
j‖2 = 2

(
1 − 1

[(βt)2 + 1]1/2

)
(5.5)

for the negative modes.
Figure 5a shows the norm difference ‖δηj (t) − δηt

j‖2 for the positive modes. The zero
modes’ normed differences remain precisely zero, and (5.4) seems to be well-satisfied for
the T1 positive modes. However the LP1 positive modes exhibit growth in their respective
normed differences.

It is instructive to compare this growth rate with that of the non-modes. We therefore
compute ‖δξj (t) − δξ t

j‖2 for j = 62, . . . ,67 in Fig. 6, where δξj (t) denotes evolution of
the non-mode δξj under the modified dynamics (5.2) with K = 40. The non-modes exhibit
much faster, and more erratic growth in their normed differences than the Lyapunov modes.
This suggests that we may consider the growth of the modes’ normed differences to be
small. Further, rotation toward the more unstable modes, due to numerical instability, may
be responsible for the small growth in the LP1 modes’ normed differences (see Sect. 5.3),
so a reasonable conclusion seems to be that (5.4) may hold up to numerical instability.

The normed difference for the negative zero modes is in excellent agreement with (5.5),
as expected, and the best fit to the numerical data for the zero modes is obtained at β ≈
1/192.7. The negative non-zero modes’ normed differences experience a faster growth rate
than that of the zero modes. This is likely also due to numerical instability, but the negative
mode normed differences nonetheless resemble the form predicted by (5.5).

2The converse of this does not necessarily hold.
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Fig. 5 Normed differences ‖δηj (n)−δηn
j
‖2 for positive (a) and negative (b) modes over 500 collisions, with

j = 92, . . . ,97 and j = 104, . . . ,109 respectively. n is the collision number. The corresponding Lyapunov
step label for each mode is shown in the legend. (a): The positive zero modes are not shown, but all satisfy
‖δηj (n) − δηn

j
‖ = 0 within machine precision. (b): The function f (n) = 2[1 − 1/

√
(βn)2 + 1] is best fitted

to the negative zero modes at β = 1/192.7 with reduced χ2 = 3.7 × 10−4

5.3 Inner Products

The form of the normalized tangent dynamics [see (4.15) and (5.3)] means that the inner
product of the symplectic pair δηj (t) and δη200−j+1(t) = (J200δηj )(t) should grow as

δηj (t) · δη200−j+1(t) = βt

[(βt)2 + 1]1/2
. (5.6)
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Fig. 6 Normed differences ‖δξj (n) − δξn
j
‖2 for non-modes j = 62, . . . ,67 over 500 collisions. n is the

collision number. Compare this figure with Fig. 5a, noting the different vertical scales

In Fig. 7 we present the inner product growth rates for the transverse and longitudinal modes.
The zero modes are in excellent agreement with the predicted functional form, and fitting
obtains a time scale β = 1/196.3. The growth rate for the other modes is in good agreement
with the predicted behavior, although mode 96 and 91 appear to exhibit a decay in their
inner product after 800 collisions.

The orthogonality of A(t) in (4.15) also implies that positive modes should stay ortho-
normal to positive modes and negative modes to negative modes. We test this orthogonality
explicitly by computing δηi(t) · δηj (t), for 88 ≤ i ≤ j ≤ 113. Results are shown in Ta-
ble 1.

The off-diagonal inner products in Table 1 are mostly non-zero. In order to gain a sense
of scale, it is instructive to compare the size of these inner products with those of the
non-modes, by computing δξi(t) · δξj (t) for 61 ≤ i ≤ j ≤ 69. Results are shown in Ta-
ble 2. The inner products of the non-modes appear larger than that of the modes: the av-
erage absolute value of the off-diagonal inner product for the positive modes is 0.14 and
for the negative modes is 0.09; however for the non-modes the average is 0.31 and stan-
dard deviation 0.18. Note that e.g. modes 95 and 92 both seem to be rotating toward the
more unstable mode 88, whilst mode 94 seems to rotate toward mode 90. Rotation to-
ward more unstable modes is characteristic of the numerical instability in the system. Since
the off-diagonal inner products of the modes are small in the scale of the non-mode in-
ner products, it seems orthogonality of the positive (negative) modes with respect to posi-
tive (negative) modes may be preserved by the tangent dynamics up to numerical instabil-
ity.

5.4 Symplecticity Property

It is also of interest to test the symplecticity property (4.20) by computing the sum
log(‖δηj (t)‖)+ log(‖δη200−j+1(t)‖). Figure 8 shows this sum for the modes compared to the
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Fig. 7 Inner product δηj (n) · δη200−j+1(n) for transverse (a) and longitudinal (b) modes as function of
collision number n. The corresponding Lyapunov step label for each symplectic pair of modes is shown in
the legend. For comparison the predicted growth rate βn/[(βn)2 + 1]1/2 is also shown, fitted to data for the
zero mode inner products, e.g. δη98(n) · δη103(n) or δη99(n) · δη102(n), which all coincide. The best fit for
both plots is obtained at β = 1/196.3 with reduced χ2 = 4.8 × 10−5

predicted curve 1/2 log[(βt)2 +1]. Once more the zero mode data are in excellent agreement
with the predicted functional form (4.20), as expected, while the non-zero modes appear to
diverge from it. Moreover, for the longitudinal modes 92 to 95 the sum appears to grow
linearly, rather than logarithmically, which was a key assumption in Sect. 4.4. However, just
as in Fig. 5, such divergence may also be merely due to numerical instability. However,
one cannot completely exclude the possibility that the actual mode tangent dynamics differs
from that presented in (4.15).
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Table 1 Mode inner products δηi (n) · δηj (n) after n = 500 collisions, where i is the row index and j

the column index. The column labeled (top) 88 or (bottom) 104 contains only the single entry 1.00 and is
therefore not shown. Top: positive mode inner products for 88 ≤ i ≤ j ≤ 97. Bottom: negative mode inner
products for 104 ≤ i ≤ j ≤ 113

89 90 91 92 93 94 95 96 97

88 −0.10 0.06 −0.36 −0.48 −0.01 0.07 0.46 −0.05 −0.12

89 1.00 0.32 0.20 0.25 −0.17 −0.00 0.25 −0.04 0.01

90 · 1.00 0.04 −0.10 −0.14 −0.33 0.29 0.01 0.09

91 · · 1.00 0.16 −0.00 0.12 −0.39 −0.09 0.11

92 · · · 1.00 −0.16 0.03 −0.06 0.03 −0.03

93 · · · · 1.00 0.20 −0.19 −0.05 0.04

94 · · · · · 1.00 −0.20 −0.04 −0.10

95 · · · · · · 1.00 0.04 −0.14

96 · · · · · · · 1.00 0.02

97 · · · · · · · · 1.00

105 106 107 108 109 110 111 112 113

104 0.02 −0.06 −0.02 0.01 0.07 0.01 −0.01 0.06 −0.12

105 1.00 0.11 −0.03 −0.02 0.01 −0.06 0.05 0.13 0.07

106 · 1.00 −0.18 −0.23 −0.13 −0.07 0.17 −0.26 0.08

107 · · 1.00 0.08 −0.09 −0.01 −0.10 −0.08 −0.17

108 · · · 1.00 0.09 −0.07 0.05 0.03 −0.23

109 · · · · 1.00 0.17 0.01 0.01 −0.10

110 · · · · · 1.00 0.06 −0.18 0.31

111 · · · · · · 1.00 −0.18 0.07

112 · · · · · · · 1.00 0.05

113 · · · · · · · · 1.00

Table 2 Non-mode inner products δξi (n) · δξj (n) after n = 500 collisions, where i is the row index, j the
column index and 61 ≤ i ≤ j ≤ 69. The column labeled 61 contains only the single entry 1.00 and is not
therefore shown

62 63 64 65 66 67 68 69 70

61 0.23 −0.25 −0.13 −0.09 −0.31 0.36 −0.26 −0.36 0.21

62 1.00 −0.04 −0.10 −0.35 −0.64 −0.13 −0.15 0.36 −0.08

63 · 1.00 0.20 −0.52 −0.39 0.19 −0.30 0.52 0.14

64 · · 1.00 −0.34 −0.18 0.24 0.48 0.03 0.39

65 · · · 1.00 0.80 −0.29 0.37 −0.46 −0.62

66 · · · · 1.00 −0.34 0.27 −0.29 −0.48

67 · · · · · 1.00 −0.00 −0.40 0.71

68 · · · · · · 1.00 −0.45 −0.07

69 · · · · · · · 1.00 −0.25

70 · · · · · · · · 1.00
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Fig. 8 Plots of log(‖δηj (n)‖)+ log(‖δη200−j+1(n)‖) as function of collision number n for j = 92, . . . ,98.
The corresponding Lyapunov step label for each mode symplectic pair is shown in the legend. The zero mode
symplectic pairs coincide, so that only one (j = 98) is shown. Fitting the predicted functional form (solid
line) to the zero mode data reveals excellent agreement: the best fit occurs at β = 1/190.4 with reduced
χ2 = 3.1 × 10−4

6 Conclusion

We have shown that the numerical dynamics of the Lyapunov modes in the quasi-one-
dimensional system may be represented by time-modal linear combinations of an initial set
of Lyapunov modes. Further, we suggested a form for the Lyapunov mode tangent dynamics,
based on the form of the zero mode tangent dynamics. The inner products and normed dif-
ferences of the Lyapunov modes predicted by this tangent dynamics resemble the numerical
data, but the instability of the numerical method frustrates a more meaningful analysis. Our
suggested tangent dynamics implies that the Lyapunov modes have well-defined Lyapunov
exponents in the positive time limit.

Acknowledgements The authors are grateful to C. Angstmann and T. Chung for discussions.

Appendix A: Theoretical Summary

A.1 Tangent Space Dynamics

Suppose we have an r-dimensional system of N particles, with phase flow φt : M → M �
R

2rN . Classification of the stability of a tangent vector δξ ∈ TξM is achieved by following
theorem originally due to Oseledec [7, 13].

Theorem 1 (Multiplicative Ergodic Theorem) Let φt : M → M be a (not necessarily in-
vertible) differentiable phase flow, which preserves the Liouville measure. Then for almost
all ξ ∈ M (with respect to this measure) the stability matrix

�ξ,+ ≡ lim
t→∞

[(
Dξφ

t
)T

Dξφ
t
]1/2t

(A.1)
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exists and there exists a positive integer l and distinct real numbers λ(j) such that �ξ,+ has
eigenvalues exp(λ(j)) for j = 1, . . . , l, where λ(1) > · · · > λ(l). Let U

(j)

ξ,+ be the eigenspace of
�ξ,+ corresponding to eigenvalue exp(λ(j)), and let

V
(j)

ξ,+ ≡ U
(j)

ξ,+ ⊕ · · · ⊕ U
(l)
ξ,+, (A.2)

V
(l+1)
≡,+ {0}. Then furthermore,

V
(j)

ξ,+ − V
(j+1)

ξ,+ =
{
δξ ∈ TξM : lim

t→∞
1

t
log

‖Dξφ
tδξ‖

‖δξ‖ = λ(j)

}
. (A.3)

As previously, the numbers λ(j) are called Lyapunov exponents, and the ordered set {λ(j)}
is called the Lyapunov spectrum. We have included the denominator in the logarithm of
(A.3) to indicate explicitly that the Lyapunov exponent describes a ratio of tangent vector
lengths. This denominator contributes a zero term to the exponent in the limit t → ∞, so we
neglect it henceforth.

The stability matrix �ξ,+ is clearly symmetric, so the eigenspaces U
(j)

ξ,+ form an orthogo-

nal decomposition of the tangent space. That is, TξM = U
(1)
ξ,+ ⊕ · · · ⊕ U

(l)
ξ,+ and 〈δξ, δη〉 = 0

for δξ ∈ U
(j)

ξ,+, δη ∈ U
(k)
ξ,+ and j �= k, where we use the usual inner product here—the dot

product—which defines the norm ‖ · ‖. It follows from this decomposition and the definition
of the spaces V

(j)

ξ,+ that TξM = V
(1)
ξ,+ ⊃ · · · ⊃ V

(l)
ξ,+ ⊃ V

(l+1)
ξ,+ = {0}.

According to the theorem, the sets V
(j)

ξ,+ − V
(j+1)

ξ,+ partition TξM according to the Lya-
punov exponents: each non-zero tangent vector has an unique associated Lyapunov expo-
nent. This means that we may write

V
(j)

ξ,+ =
l⋃

k=j

(
V

(k)
ξ,+ − V

(k+1)
ξ,+

)
∪ {0}

=
{
δξ ∈ TξM : lim

t→∞
1

t
log‖Dξφ

tδξ‖ ≤ λ(j)

}
∪ {0}, (A.4)

and call V
(j)

ξ,+ the (l − j + 1)-th most stable subspace of TξM in the positive time limit, or

the positive (l − j + 1)-th stable subspace for short. From the definition of the spaces V
(j)

ξ,+
in the theorem it also follows immediately that

U
(j)

ξ,+ − {0} ⊂ V
(j)

ξ,+ − V
(j+1)

ξ,+ , (A.5)

and hence the non-zero elements of the eigenspaces have associated Lyapunov exponent
λ(j), as would be expected. Further, orthogonality of the eigenspaces and (A.2) implies

U
(j)

ξ,+ = V
(j)

ξ,+ ∩ (
V

(j+1)

ξ,+
)⊥

, (A.6)

so that the eigenspace U
(j)

ξ,+ is that subspace orthogonal to the positive (l − j)-th stable
subspace but contained within the positive (l − j + 1)-th stable subspace.
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A.2 Hamiltonian Properties

The phase flow of the particle system is Hamiltonian, and consequently the composition of
phase flows exhibits the (homomorphism) property

φt ◦ φs = φt+s . (A.7)

The phase flow is clearly invertible, with inverse (φt )−1 = φ−t and φ0 is the identity map.
(As such, the set {φt }t∈R is an Abelian group that is isomorphic to the real numbers.) We
have then from (A.7) and the chain rule that the tangent flow is a co-cycle, that is

Dφs(ξ)φ
tDξφ

s = Dξφ
t+s . (A.8)

The tangent flow is therefore invertible, with inverse (Dξφ
t )−1 = Dφt (ξ)φ

−t and Dξφ
0 = I ,

the identity matrix.
A Hamiltonian phase flow preserves the Liouville measure on M [1], so that the phase

flow under consideration satisfies the hypotheses of the Multiplicative Ergodic Theorem.
Invertibility of the phase flow means that we may apply the theorem also to the inverse φ−t ,
which is equivalent to contemplating a switch in the direction of time. It follows from the
theorem that the stability matrix

�ξ,− ≡ lim
t→−∞

[(
Dξφ

t
)T

Dξφ
t
]1/2|t |

(A.9)

also exists, and �ξ,− must have the inverse eigenvalues to �ξ,+, so that it has eigenvalues
exp(−λ(j)), for j = 1, . . . , l. As we expect, the Lyapunov exponents of φ−t are then the
opposite sign to those of φt but have the same multiplicity, denoted mult(j). We let U

(j)

ξ,− be

the eigenspace corresponding to eigenvalue exp(−λ(j)), and then TξM = U
(1)
ξ,− ⊕ · · · ⊕ U

(l)
ξ,−

is another orthogonal decomposition of the tangent space. In general, note that U
(j)

ξ,+ �= U
(j)

ξ,−,

but we do have that dimU
(j)

ξ,+ = mult(j) = dimU
(j)

ξ,−.

The j -th most stable subspace in the negative time limit V
(j)

ξ,−, called the negative j -th sta-
ble space, is now well-defined by the theorem. Since −λ(1) < · · · < −λ(l) are the Lyapunov
exponents, we must have3

V
(j)

ξ,− ≡ U
(1)
ξ,− ⊕ · · · ⊕ U

(j)

ξ,−, (A.10)

and then the tangent space is partitioned into the sets

V
(j)

ξ,− − V
(j−1)

ξ,− =
{
δξ ∈ TξM : lim

t→−∞
1

|t | log‖Dξφ
tδξ‖ = −λ(j)

}
, (A.11)

where TξM = V
(l)
ξ,− ⊃ · · · ⊃ V

(1)
ξ,− ⊃ V

(0)
ξ,− ≡ {0}. From (A.10) we have

U
(j)

ξ,− = V
(j)

ξ,− ∩ (
V

(j−1)

ξ,−
)⊥

, (A.12)

3Note that since the order of the Lyapunov exponents has been reversed, we have reversed the indexing of

these spaces so that the (l − j + 1)-th stable space is V
(l−j+1)
ξ,− rather than V

(j)
ξ,−.
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similarly to (A.6). The non-zero elements of the eigenspaces U
(j)

ξ,− has associated exponent
−λ(j) analogously to (A.5), and note also that, just as in (A.4), here

V
(j)

ξ,− =
{
δξ ∈ TξM : lim

t→−∞
1

|t | log‖Dξφ
tδξ‖ ≤ −λ(j)

}
∪ {0}. (A.13)

We call the elements of the eigenspaces U
(j)

ξ,+ (U(j)

ξ,−) the Lyapunov vectors, each of which
has an associated Lyapunov exponent in the positive (negative) time limit. We may clearly
choose an orthonormal basis of TξM such that each element of the basis is an element of
an eigenspace U

(j)

ξ,+ (U(j)

ξ,−), just as claimed in Sect. 2.2. Further, if any of the Lyapunov
exponents have multiplicity greater than unity, then we have many choices of such a basis
and only the eigenspace itself is well-defined.

A.3 Covariant Subspaces

Suppose the tangent vector δξ ∈ V
(j)

ξ,+ −V
(j+1)

ξ,+ , so that it has corresponding Lyapunov expo-
nent λ(j). If η = φs(ξ) then δη = Dξφ

sδξ ∈ TηM should also have Lyapunov exponent λ(j),
since the Lyapunov exponents are independent of time. This property is guaranteed by the
co-cycle property of the tangent flow and its consequent invertibility. It can be shown that

V
(j)

φs (ξ),+ = Dξφ
sV

(j)

ξ,+, (A.14)

for s finite. Further, since the V
(j)

ξ,+ are closed subspaces, the equality also holds in either
limit s → ±∞. A subspace satisfying (A.14) for all real s and s → ±∞ is called a covariant
subspace, and an identical result holds for the V

(j)

ξ,−. Note that the set V
(j)

ξ,+ − V
(j+1)

ξ,+ is not
covariant since the equality does not necessarily hold in the limit s → −∞, as this set is not
closed.

For a non-zero δξ ∈ V
(j)

ξ,+, we have from (A.14) that Dξφ
−sδξ ∈ V

(j)

φ−s (ξ),+. Substituting
this into the inequality in (A.4) and applying the successive transformations t → t − s then
s → −(s + t), which together are the map t → −s, one finds that

V
(j)

ξ,+ ⊆
{
δξ ∈ TξM : lim

t→−∞
1

|t | log‖Dξφ
tδξ‖ ≥ −λ(j)

}
∪ {0}, (A.15)

and similarly

V
(j)

ξ,− ⊆
{
δξ ∈ TξM : lim

t→+∞
1

|t | log‖Dξφ
tδξ‖ ≥ λ(j)

}
∪ {0}. (A.16)

Equation (A.5) implies the eigenspace U
(j)

ξ,+ (U(j)

ξ,−) has associated Lyapunov exponent
λ(j) (−λ(j)) in the positive (negative) time limit. However, (A.15) and (A.16) unfortunately
imply that in the negative (positive) time limit we can only say that a non-zero element of
U

(j)

ξ,+ (U(j)

ξ,−) has exponent λ ≥ −λ(j) (λ ≥ λ(j)). Nevertheless, comparison of (A.4), (A.13),

(A.15) and (A.16) suggests that the intersection of the spaces V
(j)

ξ,+ and V
(j)

ξ,− produces a
subspace with well-defined Lyapunov exponent in both the positive or negative time limit.
That is, let

W
(j)

ξ ≡ V
(j)

ξ,+ ∩ V
(j)

ξ,−. (A.17)
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Then

W
(j)

ξ =
{
δξ ∈ TξM : lim

t→±∞
1

|t | log‖Dξφ
tδξ‖ = ±λ(j)

}
∪ {0}, (A.18)

and it can be proven (see e.g. Ref. [16]) that

V
(j)

ξ,− = W
(1)
ξ ⊕ · · · ⊕ W

(j)

ξ , (A.19)

so that TξM = W
(1)
ξ ⊕ · · · ⊕ W

(l)
ξ . This is called the Oseledec decomposition of the tangent

space, and W
(j)

ξ is called an Oseledec space. Note that the Oseledec spaces are not orthogo-

nal like the U
(j)

ξ,−, but are clearly covariant spaces unlike the U
(j)

ξ,−. From (A.19) and (A.12)

it follows that dimU
(j)

ξ,− = dimW
(j)

ξ .

A.4 Numerical Scheme

The Lyapunov exponents are calculated via the numerical scheme of Benettin [2] and Shi-
mada [17]. A byproduct of this scheme is a orthonormal basis of Lyapunov vectors that
are elements of the eigenspaces U

(j)

ξ,−. The numerical scheme depends upon the following
well-known result, which we state as a proposition. We call the map Dξφ

tδξ/‖Dξφ
tδξ‖ the

normalized tangent flow.

Proposition A randomly chosen non-zero, tangent vector converges for t → +∞ under the
normalized tangent flow to the most stable space in the negative time limit, V

(1)
ξ,−. That is for

non-zero δξ ∈ TξM and t → ∞,

Dξφ
tδξ

‖Dξφtδξ‖ → proj

(
V

(1)

φt (ξ),−,
Dξφ

tδξ

‖Dξφtδξ‖
)

, (A.20)

in the norm ‖ · ‖, where proj(V , x) denotes the projection of the vector x onto the subspace
V .

The proposition can be proved by use of the Oseledec decomposition of the tangent space,
the invariance property of the Oseledec spaces and the fact that these spaces possess well-
defined, ordered Lyapunov exponents (see e.g. [8]). The idea here is that a randomly chosen
tangent vector converges to its projection onto the space V

(1)
,− = W(1) under the normalized

tangent flow, but it does not converge at all in the norm ‖ · ‖ under the usual tangent flow.
Let

M(j) =
{
k ∈ Z :

j−1∑

i=1

mult(i) < k ≤
j∑

i=1

mult(i)

}
. (A.21)

The proposition may be generalized to show that for k randomly chosen, nonzero, linearly
independent tangent vectors δξi ,

lim
t→∞V

(j−1)

φt (ξ),− ⊂ lim
t→∞ span

{
Dξφ

tδξi

‖Dξφtδξi‖
}k

i=1

⊆ lim
t→∞V

(j)

φt (ξ),−, (A.22)

where j is such that k ∈ M(j).
We now fix t and define {δηn

i } recursively as the Gram-Schmidt orthonormalized set
generated by {[Dφ[n−1]t (ξ)φ

t ]δηn−1
i }, where {δη0

i } is the orthonormalized set of the tangent
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vector set {δξi}. Note that the tangent flow is not orthogonal. It follows then from (A.10)
and (A.22) that

lim
n→∞ δηn

k ∈ lim
n→∞U

(j)

φnt (ξ),− (A.23)

for k ∈ N(j). In other words, the numerical scheme operates as follows: if we randomly
choose a set of 2rN linearly independent tangent vectors, then apply the tangent flow to
these vectors whilst regularly Gram-Schmidt orthonormalizing them, we produce in the
positive time limit an orthonormal basis of Lyapunov vectors. These Lyapunov vectors have
well-defined Lyapunov exponents only in the negative time limit.

A.5 Further Hamiltonian Properties

A Hamiltonian phase flow also preserves the symplectic structure of the phase space M , so
that the tangent flow is a symplectic matrix. Hence

(Dξφ
t )T J2rNDξφ

t = J2rN , (A.24)

where J2rN is defined in (4.2), and we put J ≡ J2rN henceforth. It is well-known that, due
to this symplecticity, there is always a zero Lyapunov exponent and all other exponents are
paired signwise with equal multiplicity such that

λ(l−j+1) = −λ(j). (A.25)

Hence the number of distinct exponents, l, is always odd and λ([l+1]/2) = 0. Henceforth we
let m ≡ (l +1)/2, and we call the associated eigenspaces U

(m)
ξ,− or U

(m)
ξ,+ the zero eigenspaces.

The stability matrices �ξ,± (A.1), (A.9) are thus also symplectic. It can then be shown
from (A.25) and the definition of the U

(j)

ξ,± as eigenspaces of �ξ,±, that

U
(j)

ξ,± = JU
(l−j+1)

ξ,± (A.26)

and hence for the zero eigenspaces

U
(m)
ξ,± = JU

(m)
ξ,± . (A.27)

Note that for all δξ ∈ TξM , the dot product δξ · Jδξ = 0. We deduce dimU
(m)
ξ,± = mult(m)

must be even, since if δξ is an element of an orthogonal basis for U
(j)

ξ,±, then by (A.27) so is
Jδξ .

An important consequence of (A.25) and (A.26) is that the Lyapunov spectrum and an
orthonormal basis of Lyapunov vectors is fully described by considering only positive Lya-
punov exponents and the Lyapunov vectors corresponding to these. That is, for a orthonor-
mal set of Lyapunov vectors {δξk}, k = 1, . . . ,2rN , we may choose δξ2rN−j+1 = Jδξj for
j = 1, . . . , rN .

A.6 Symmetries and Zero Modes

If we presume that the dynamics of the system under consideration has full (transla-
tional) spatial and time symmetry, then there are consequently r + 1 tangent vectors δξi ,
i = 1, . . . , r + 1 such that

Dξφ
tδξi = δξi . (A.28)
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The first r tangent vectors of these correspond to a uniform translation of the N particles in
the i-th spatial direction. With reference to (2.3) these are δξi = 1/N1/2(0, ei , . . . , ei), where
ei ∈ R

r is the i-th unit basis vector repeated N times and 0 is the rN dimensional zero vector.
Symmetry in time means that the system also possesses time translational invariance, and
hence the velocity unit tangent vector at state ξ = (p, q), δξr+1 = 1/‖p‖(0,p), satisfies
Dξφ

tδξr+1 = δξr+1.
By Noether’s theorem [1], the spatial and time symmetries of the Hamiltonian dynamics

give rise to conserved quantities, namely momentum and energy respectively. Hence we
have a further r tangent vectors corresponding to a momentum shift in the i-th direction
δξi+r+1 = 1/N1/2(ei, . . . , ei,0), for i = 1, . . . , r . These tangent vectors have dynamics

Dξφ
tδξi+r+1 = δξi+r+1 + βtδξi, (A.29)

where β > 0 is some constant, such that they are generalized eigenvectors of Dξφ
t with

algebraic multiplicity 2. Further, a shift in energy effectively raises or lowers the temperature
of the system, and hence we have a tangent vector δξ2r+2 = 1/‖p‖(p,0) which has dynamics

Dξφ
tδξ2r+2 = δξ2r+2 + βtδξr+1, (A.30)

corresponding to linear separation in time. Note that we have written all the δξi with unit
norm.

Now, δξi+r+1 = −Jδξi for all i = 1, . . . , r + 1. Applying this relation together with
the symplecticity of the tangent flow to (A.28), (A.29) and (A.30) one finds that for
i = 1, . . . , r + 1

(
Dξφ

t
)T

δξi = δξi + Jβtδξi . (A.31)

It follows by the definition of the stability matrices in the Multiplicative Ergodic Theorem
with (A.28) and (A.31) that

�ξ,±δξi = lim
t→±∞

[(
Dξφ

t
)T

Dξφ
t
]1/2|t |

δξi

= lim
t→±∞(I + βtJ )1/2|t |δξi

= δξi, (A.32)

for i = 1, . . . , r + 1, and a similar result holds for i = r + 2, . . . ,2r + 2. By definition of
U

(m)
ξ,+ and U

(m)
ξ,− as a zero eigenspace of �ξ,+ and �ξ,− respectively, we have

span
{
δξi

}2r+2

i=1
⊆ U

(m)
ξ,− ∩ U

(m)
ξ,+ . (A.33)

We therefore call δξi the zero modes.

A.7 Equivalence of Zero Spaces

Empirical results confirm that the linear combinations of the δξi in Appendix A.6 are indeed
the zero modes generated by the numerical scheme of Appendix A.4. Moreover, one finds
the multiplicity of λ(m), mult(m) = 2s + 2, for s the number of unbroken spatial symmetries
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in the system of interest. It follows that dimU
(m)
ξ,+ = dimU

(m)
ξ,− = dim(span{δξi}). Since the

zero modes are linearly independent, then with reference to (A.33) it must be that

U
(m)
ξ,− = span

{
δξi

}2r+2

i=1
= U

(m)
ξ,+ . (A.34)

In other words, the zero eigenspaces coincide and their non-zero elements consequently
have a well-defined Lyapunov exponent λ = 0 in either the positive or negative time limit.

From the definition of the subspace V
(j)

ξ,+ in the Multiplicative Ergodic Theorem, (A.34)

implies that U
(m)
ξ,− ⊂ V

(m)
ξ,+ . Hence U

(m)
ξ,− ⊆ V

(m)
ξ,+ ∩ V

(m)
ξ,− ≡ W

(m)
ξ . However, dimW

(m)
ξ =

dimU
(m)
ξ,− so it must be that

W
(m)
ξ = U

(m)
ξ,− = U

(m)
ξ,+ , (A.35)

or in other words the zero eigenspaces and the zero Oseledec subspace coincide. This re-
sult is a direct consequence of the structure of the zero modes and the empirically verified
multiplicity of the zero exponent.

Appendix B: Symplecticity of Numerical Dynamics

Consider the numerical dynamics �t = Nt
�(�) defined in Sect. 3.1, and let � = (. . . |δωj | . . .)

be an orthogonal 2n× 2n matrix of Lyapunov vectors such that δω2n−j+1 = Jδωj . Note that
this choice of δωj coincides with a possible choice of an ordered set of Lyapunov vec-
tors generated by the numerical scheme (see Appendix A.5). We now show that Nt

� is a
symplectic operator, in the sense that

JNt
�(δωj ) = Nt

�(J δωj ), (B.1)

for j = 1, . . . ,2n and J ≡ J2n as defined in (4.2).
Firstly, we may consider the numerical dynamics to consist of evolution under the tan-

gent flow Dξφ
t followed by the Gram-Schmidt orthonormalization procedure (see Ap-

pendix A.4). Letting �(t) = Dξφ
t�, then the numerical dynamics may be written as

�t = �(t)R−1(t) where R(t) is the upper triangular matrix of the so-called QR factor-
ization of �(t). Hence we have

Nt
�(�) = Dξφ

t�R−1(t), (B.2)

as a decomposition of the numerical dynamics. Nt
� is explicitly dependent on the choice of

� and is implicitly dependent on the ordering of the δωj due to the iterative nature of the
Gram-Schmidt procedure, so it is not a linear map, although the matrix Nt

�(�) is clearly
orthogonal.

Now, (δωj )
t = Nt

�(δωj ) = Dξφ
t�R−1(t)�T δωj . Defining the matrix

N(t) ≡ Dξφ
t�R−1(t)�T , (B.3)

we also have that Nt
�(J δωj ) = Nt

�(δω2n−j+1) = N(t)J δωj . Since the δωj form a basis of
the tangent space, (B.1) is then equivalent to JN(t) = N(t)J . Since N(t) is orthogonal, it
therefore suffices to show that N(t) is symplectic in order to show (B.1).



30 D.J. Robinson, G.P. Morriss

Let R(t) = �R(t)�T . Then the orthogonality of N(t), i.e. N−1(t) = NT (t), together
with (B.3) implies that R(t)T R(t) = (Dξφ

t )T Dξφ
t . It follows that R(t)T R(t) is symplectic

due to the symplecticity of the tangent flow. That is,

R(t)T R(t)JR(t)T R(t) = J. (B.4)

By hypothesis, we may write

� =
(
�

∣
∣∣J�Ĩ

)
, (B.5)

where � is an 2n × n matrix with orthonormal columns that satisfies �T J� = 0, and Ĩ

is the n × n antidiagonal matrix with 1s on the antidiagonal and zeros elsewhere. It then
follows from this choice that

�T J� = J̃ , where J̃ =
(

0 −Ĩ

Ĩ 0

)
. (B.6)

Hence (B.4) implies

RT (t)R(t)J̃RT (t)R(t) = J̃ . (B.7)

By (B.3), in order for N(t) to be symplectic we require RT JR = J . From (B.6) this
requirement is equivalent to

R(t)T J̃R(t) = J̃ . (B.8)

It is therefore sufficient to show (B.8) in order to show that N(t) is symplectic and hence
(B.1) holds.

One can show via some algebra that (B.7) together with the upper triangular nature of
R(t) produces (B.8). In detail, we write

R(t) =
(

A B

0 C

)
, (B.9)

where A, C are themselves n × n upper-triangular matrices with strictly positive values on
the diagonal. Equation (B.7) provides restrictions on A, B and C so that one finds

R(t)J̃RT (t) =
(

0 −AĨCT

CĨAT 0

)
. (B.10)

AĨCT is an upper antitriangular matrix (an upper triangular matrix multiplied by Ĩ ) with
strictly positive values on the antidiagonal,and one finds further that AĨCT is also orthogo-
nal. The only possibility is AĨCT = Ĩ , so since J̃ 2 = −I , (B.8) holds and so does (B.1).
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